In non-neoplastic Barrett's epithelial cells, acid exerts early antiproliferative effects through activation of the Chk2 pathway.
نویسندگان
چکیده
Acid exerts pro-proliferative effects in Barrett's-associated esophageal adenocarcinoma cells. In non-neoplastic Barrett's epithelial (BAR-T) cells, in contrast, we have shown that acid exposure has antiproliferative effects. To explore our hypothesis that the acid-induced, antiproliferative effects are mediated by alterations in the proteins that regulate the G(1)-S cell cycle checkpoint, we exposed non-neoplastic Barrett's cells to acidic media (pH 4.0) and analyzed G(1)-S checkpoint proteins' expression, phosphorylation, and activity levels by Western blot. We studied acid effects on growth (by cell counts), proliferation (by flow cytometry and bromodeoxyuridine incorporation), cell viability (by trypan blue staining), and apoptosis (by annexin V staining), and we used caffeine and small interfering RNA to assess the effects of checkpoint kinase 2 (Chk2) inhibition on G(1)-S progression. Acid exposure significantly decreased cell numbers without affecting cell viability and with only a slight increase in apoptosis. Within 2 h of acid exposure, there was a delay in progression through the G(1)-S checkpoint that was associated with increased phosphorylation of Chk2, decreased levels of Cdc25A, and decreased activity of cyclin E-cyclin-dependent kinase 2; by 4 h, a continued delay at G(1)-S was associated with increased expression of p53 and p21. Caffeine and Chk2 siRNA abolished the acid-induced G(1)-S delay at 2 but not at 4 h. We conclude that acid exposure in non-neoplastic BAR-T cells causes early antiproliferative effects that are mediated by the activation of Chk2. Thus, we have elucidated a mechanism whereby acid can exert disparate effects on proliferation in neoplastic and non-neoplastic BAR-T cells.
منابع مشابه
Soluble uric acid induces inflammation via TLR4/NLRP3 pathway in intestinal epithelial cells
Objective(s): Hyperuricemia is a risk for cardiovascular and metabolic diseases, but the mechanism is ambiguous. Increased intestinal permeability is correlated with metabolic syndrome risk factors. Intestinal epithelial cells play a pivotal role in maintaining intestinal permeability. Uric acid is directly eliminated into intestinal lumen, however, the mechanism and e...
متن کاملMonascin ameliorate inflammation in the lipopolysaccharide-induced BV-2 microglial cells via suppressing the NF-κB/p65 pathway
Objective(s): The pathophysiology of neurodegenerative diseases is complicated, in which inflammatory reactions play a vital role. Microglia cells activation, an essential process of neuroinflammation, can produce neurotoxic molecules and neurotrophic factors, which aggravate inflammation and neuronal injury. Monascin, a major component of red yeast rice, is an azaphil...
متن کاملDeoxycholic acid causes DNA damage while inducing apoptotic resistance through NF-κB activation in benign Barrett's epithelial cells.
Gastroesophageal reflux is associated with adenocarcinoma in Barrett's esophagus, but the incidence of this tumor is rising, despite widespread use of acid-suppressing medications. This suggests that refluxed material other than acid might contribute to carcinogenesis. We looked for potentially carcinogenetic effects of two bile acids, deoxycholic acid (DCA) and ursodeoxycholic acid (UDCA), on ...
متن کاملCellular inhibition of checkpoint kinase 2 (Chk2) and potentiation of camptothecins and radiation by the novel Chk2 inhibitor PV1019 [7-nitro-1H-indole-2-carboxylic acid {4-[1-(guanidinohydrazone)-ethyl]-phenyl}-amide].
Chk2 is a checkpoint kinase involved in the ataxia telangiectasia mutated pathway, which is activated by genomic instability and DNA damage, leading to either cell death (apoptosis) or cell cycle arrest. Chk2 provides an unexplored therapeutic target against cancer cells. We recently reported 4,4'-diacetyldiphenylurea-bis(guanylhydrazone) (NSC 109555) as a novel chemotype Chk2 inhibitor. We hav...
متن کاملMalignant Transformation of Non-Neoplastic Barrett's Epithelial Cells through Well-Defined Genetic Manipulations
BACKGROUND Human Barrett's cancer cell lines have numerous, poorly-characterized genetic abnormalities and, consequently, those lines have limited utility as models for studying the early molecular events in carcinogenesis. Cell lines with well-defined genetic lesions that recapitulate various stages of neoplastic progression in Barrett's esophagus would be most useful for such studies. METHO...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 67 18 شماره
صفحات -
تاریخ انتشار 2007